A New Tool for the Automatic Detection of Muscular Voluntary Contractions in the Analysis of Electromyographic Signals
نویسندگان
چکیده
Electromyographic (EMG) signals play a key role in many clinical and biomedical applications. They can be used for identifying patients with muscular disabilities, assessing lower-back pain, kinesiology and motor control. There are three common applications of the EMG signal: (1) to determine the activation timing of the muscle; (2) to estimate the force produced by the muscle and (3) to analyze muscular fatigue through analysis of the frequency spectrum of the signal. We have developed an EMG tool that was incorporated in an existing web-based biosignal acquisition and processing framework. This tool can be used on a post-processing environment and provides not only frequency and time parameters, but also an automatic detection of starting and ending times for muscular voluntary contractions using a threshold-based algorithm with the inclusion of the Teager– Kaiser energy operator. The algorithm for the muscular voluntary contraction detection can also be reported after a real-time acquisition, in order to discard possible outliers and simultaneously compare activation times in different muscles. This tool covers all known applications and allows a careful and detailed analysis of the EMG signal for both clinicians and researchers. The detection algorithm works without user interference and is also user-independent. It manages to detect muscular activations in an interactive process. The user simply has to select the signal’s time interval as input, and the outcomes are provided afterwards.
منابع مشابه
Surface Electromyographic Onset Detection Based On Statistics and Information Content
The correct detection of the onset of muscular contraction is a diagnostic tool to neuromuscular diseases and an action trigger to control myoelectric devices. In this work, entropy and information content concepts were applied in algorithmic methods to automatic detection in surface electromyographic signals.
متن کاملK-Complex Detection Based on Synchrosqueezing Transform
K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملImproved Knock Detection Method Based on New Time-Frequency Analysis In Spark Ignition Turbocharged Engine
Premature combustion that affects outputs, thermal efficiencies and lifetimes of internal combustion engine is called “knock effect”. However knock signal detection based on acoustic sensor is a challenging task due to existing of noise in the same frequency spectrum. Experimental results revealed that vibration signals, generated from knock, has certain frequencies related to vibration resonan...
متن کاملPrediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model
Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Interacting with Computers
دوره 27 شماره
صفحات -
تاریخ انتشار 2015